Image inpainting aims to complete the missing or corrupted regions of images with realistic contents. The prevalent approaches adopt a hybrid objective of reconstruction and perceptual quality by using generative adversarial networks. However, the reconstruction loss and adversarial loss focus on synthesizing contents of different frequencies and simply applying them together often leads to inter-frequency conflicts and compromised inpainting. This paper presents WaveFill, a wavelet-based inpainting network that decomposes images into multiple frequency bands and fills the missing regions in each frequency band separately and explicitly. WaveFill decomposes images by using discrete wavelet transform (DWT) that preserves spatial information naturally. It applies L1 reconstruction loss to the decomposed low-frequency bands and adversarial loss to high-frequency bands, hence effectively mitigate inter-frequency conflicts while completing images in spatial domain. To address the inpainting inconsistency in different frequency bands and fuse features with distinct statistics, we design a novel normalization scheme that aligns and fuses the multi-frequency features effectively. Extensive experiments over multiple datasets show that WaveFill achieves superior image inpainting qualitatively and quantitatively.
翻译:图像映射旨在用现实内容完成丢失或腐败的图像区域。 流行的方法通过使用基因对抗网络,采用重建和感知质量的混合目标。 但是, 重建损失和对抗性损失侧重于将不同频率的内容合成,只是将它们一起应用,往往导致频率间冲突,并损害映射。 本文展示了WaveFill, 以波盘为基的涂漆网络, 将图像分解成多个频带, 并单独和明确地填充每个频带中的缺失区域。 WaveFill 使用独立波盘变换( DWT) 将图像分解, 从而自然保存空间信息。 它将L1 重建损失应用于已分解的低频波段和对抗性损失到高频段, 从而有效地减轻频率间冲突, 同时完成空间域的图像。 为了解决不同频带和引信特性中不统一不统一的问题, 我们设计了一个新的正常化计划, 有效地将多频带特性相匹配和结合。 对多个数据集进行的广泛实验显示, WaveFill 将图像在质量和定量上达到更佳的图像。