One of the most pressing problems in the automated analysis of historical documents is the availability of annotated training data. In this paper, we propose a novel method for the synthesis of training data for semantic segmentation of document images. We utilize clusters found in intermediate features of a StyleGAN generator for the synthesis of RGB and label images at the same time. Our model can be applied to any dataset of scanned documents without the need for manual annotation of individual images, as each model is custom-fit to the dataset. In our experiments, we show that models trained on our synthetic data can reach competitive performance on open benchmark datasets for line segmentation.


翻译:对历史文件进行自动分析的最紧迫问题是提供附加说明的培训数据。在本文件中,我们提出了一种合成文件图像语义分解培训数据的新办法。我们同时利用StyleGAN生成器中间特征中发现的组群合成RGB和标签图像。我们的模型可以应用到扫描文件的任何数据集中,而不必对单个图像进行人工说明,因为每个模型都是适合数据集的定制模型。在我们的实验中,我们显示,在合成数据方面受过培训的模型可以在用于分解线的开放基准数据集上达到竞争性的性能。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
Google最新《机器学习对偶性》报告,48页ppt
专知会员服务
35+阅读 · 2020年11月29日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
FCN 的简单实现
AI研习社
5+阅读 · 2018年1月15日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Revisiting CycleGAN for semi-supervised segmentation
Arxiv
3+阅读 · 2019年8月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
FCN 的简单实现
AI研习社
5+阅读 · 2018年1月15日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员