Diverse keyword suggestions for a given landing page or matching queries to diverse documents is an active research area in online advertising. Modern search engines provide advertisers with products like Dynamic Search Ads and Smart Campaigns where they extract meaningful keywords/phrases from the advertiser's product inventory. These keywords/phrases are representative of a diverse spectrum of advertiser's interests. In this paper, we address the problem of obtaining relevant yet diverse keywords/phrases for any given document. We formulate this as an optimization problem, maximizing the parameterized trade-off between diversity and relevance constrained over number of possible keywords/phrases. We show that this is a combinatorial NP-hard optimization problem. We propose two approaches based on convex relaxations varying in complexity and performance. In the first approach, we show that the optimization problem reduces to an eigen value problem. In the second approach, we show that the optimization problem reduces to minimizing a quadratic form over an l1-ball. Subsequently, we show that this is equivalent to a semi-definite optimization problem. To prove the efficacy of our proposed formulation, we evaluate it on various real-world datasets and compare it to the state-of-the-art heuristic approaches.
翻译:用于特定登陆页或匹配不同文件的多样化关键词建议或匹配不同文件的查询是一个积极的在线广告研究领域。现代搜索引擎为广告商提供了动态搜索广告和智能运动等产品,他们从广告商的产品目录中提取了有意义的关键词/词句。这些关键词/词句代表了广告商的多种利益。在本文中,我们处理的是为任何特定文件获取相关但多样的关键词/词句的问题。我们将此设计为一个优化问题,尽量扩大多样性和关联性之间参数化的取舍,以限制可能的关键词/词句的数量。我们表明这是一个组合式NP硬优化问题。我们根据复杂程度和性能各不相同的 convex放松提出两种方法。我们的第一个方法显示,优化问题会降低为eigen值问题。在第二个方法中,我们显示优化问题会降低到将l1-ball的四面形形式降到最低程度。我们随后显示,这相当于一个半定型化的优化问题。为了证明我们提议的配置的有效性,我们比较了各种现实世界数据设置的方法。我们比较了它。