The statistical modeling of multivariate count data observed on a space-time lattice has generally focused on using a hierarchical modeling approach where space-time correlation structure is placed on a continuous, latent, process. The count distribution is then assumed to be conditionally independent given the latent process. However, in many real-world applications, especially in the modeling of criminal or terrorism data, the conditional independence between the count distributions is inappropriate. In this manuscript we propose a class of models that capture spatial variation and also account for the possibility of data model dependence. The resulting model allows both data model dependence, or self-excitation, as well as spatial dependence in a latent structure. We demonstrate how second-order properties can be used to characterize the spatio-temporal process and how misspecificaiton of error may inflate self-excitation in a model. Finally, we give an algorithm for efficient Bayesian inference for the model demonstrating its use in capturing the spatio-temporal structure of burglaries in Chicago from 2010-2015.


翻译:在时空阵列上观察到的多变量计数数据的统计模型一般侧重于使用等级模型方法,即将时空相关结构置于连续、潜伏的进程中,然后假定计数分布是有条件独立的,因为潜伏过程。然而,在许多现实应用中,特别是在刑事或恐怖主义数据的模型中,计数分布之间的有条件独立性是不适当的。在本手稿中,我们建议了一组模型,以记录空间变量,并同时说明数据模型依赖的可能性。由此得出的模型既允许数据模型依赖性,也允许自解,也允许潜伏结构中的空间依赖性。我们展示了二阶属性如何用于描述时空过程的特点,以及错误的不精确性如何可能使模型中的自我引用化。最后,我们给出了高效的拜斯语推论,用以示范其用于2010-2015年在芝加哥捕捉入室的时空结构。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
语义分割 | context relation
极市平台
8+阅读 · 2019年2月9日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月9日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
21+阅读 · 2019年8月21日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
语义分割 | context relation
极市平台
8+阅读 · 2019年2月9日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员