Relevance search is to find top-ranked entities in a knowledge graph (KG) that are relevant to a query entity. Relevance is ambiguous, particularly over a schema-rich KG like DBpedia which supports a wide range of different semantics of relevance based on numerous types of relations and attributes. As users may lack the expertise to formalize the desired semantics, supervised methods have emerged to learn the hidden user-defined relevance from user-provided examples. Along this line, in this paper we propose a novel generative model over KGs for relevance search, named GREASE. The model applies to meta-path based relevance where a meta-path characterizes a particular type of semantics of relating the query entity to answer entities. It is also extended to support properties that constrain answer entities. Extensive experiments on two large-scale KGs demonstrate that GREASE has advanced the state of the art in effectiveness, expressiveness, and efficiency.
翻译:相关性搜索是为了在与查询实体相关的知识图表(KG)中找到最高级的实体。 相关性是模糊的, 特别是对于像DBpedia这样的精密的KG, 它支持基于多种类型关系和属性的广泛、 不同的相关语义。 由于用户可能缺乏将想要的语义正式化的专门知识, 监督的方法已经出现, 从用户提供的例子中学习隐藏的用户定义相关性。 与此类似, 我们在本文件中提出了一种与KGs相适应性搜索的新颖的基因化模型, 名为 GREASE。 该模型适用于基于元病的关联性, 即与查询实体与回答实体相关的一个特定类型的语义特征。 该模型还扩大到支持限制回复实体的属性。 对两个大型KGGs的大规模实验表明, GREASE在有效性、 直观性和效率方面提高了艺术的状态 。