Let $\Bigl\langle\matrix{n\cr k}\Bigr\rangle$, $\Bigl\langle\matrix{B_n\cr k}\Bigr\rangle$, and $\Bigl\langle\matrix{D_n\cr k}\Bigr\rangle$ be the Eulerian numbers in the types A, B, and D, respectively -- that is, the number of permutations of n elements with $k$ descents, the number of signed permutations (of $n$ elements) with $k$ type B descents, the number of even signed permutations (of $n$ elements) with $k$ type D descents. Let $S_n(t) = \sum_{k = 0}^{n-1} \Bigl\langle\matrix{n\cr k}\Bigr\rangle t^k$, $B_n(t) = \sum_{k = 0}^n \Bigl\langle\matrix{B_n\cr k}\Bigr\rangle t^k$, and $D_n(t) = \sum_{k = 0}^n \Bigl\langle\matrix{D_n\cr k}\Bigr\rangle t^k$. We give bijective proofs of the identity $$B_n(t^2) = (1 + t)^{n+1}S_n(t) - 2^n tS_n(t^2)$$ and of Stembridge's identity $$D_n(t) = B_n(t) - n2^{n-1}tS_{n-1}(t).$$ These bijective proofs rely on a representation of signed permutations as paths. Using this representation we also establish a bijective correspondence between even signed permutations and pairs $(w, E)$ with $([n], E)$ a threshold graph and $w$ a degree ordering of $([n], E)$, which we use to obtain bijective proofs of enumerative results for threshold graphs.
翻译:Let\ bigl\ langle{ n\ cr\ bigr\ rangle$, $\ bigl\ matrix{B_ ncr\ rangle$, $\ Bigl\ langle{ D_ n\ cr\ bigr\ rangle$, 分别是 A, B, B 和 D 的 Eullirian 数字, 即n元素的平整数, 美元下方$, 美元下方元素的签名调整数( 美元上方元素中, 美元上方元素中美元上下方的 美元上下方, 美元上下方的 美元上方, 美元上方的 美元上方的 美元上方的 美元上方的 美元上方的 美元上方, 美元上方的表示身份上方的 美元上方的 美元上方 。</s>