Double-blind peer review is considered a pillar of academic research because it is perceived to ensure a fair, unbiased, and fact-centered scientific discussion. Yet, experienced researchers can often correctly guess from which research group an anonymous submission originates, biasing the peer-review process. In this work, we present a transformer-based, neural-network architecture that only uses the text content and the author names in the bibliography to atttribute an anonymous manuscript to an author. To train and evaluate our method, we created the largest authorship-identification dataset to date. It leverages all research papers publicly available on arXiv amounting to over 2 million manuscripts. In arXiv-subsets with up to 2,000 different authors, our method achieves an unprecedented authorship attribution accuracy, where up to 95% of papers are attributed correctly. Thanks to our method, we are not only able to predict the author of an anonymous work but we also identify weaknesses of the double-blind review process by finding the key aspects that make a paper attributable. We believe that this work gives precious insights into how a submission can remain anonymous in order to support an unbiased double-blind review process.
翻译:双盲同侪审查被认为是学术研究的一个支柱,因为它被认为确保了公平、公正和以事实为中心的科学讨论。然而,有经验的研究人员往往可以正确地猜测研究团体的匿名提交来自哪个研究团体,从而偏向同侪审查程序。在这项工作中,我们提出了一个基于变压器的神经网络结构,该结构仅使用文本内容和书目中的作者姓名,将匿名手稿归属于作者。为了培训和评估我们的方法,我们创建了迄今为止最大的作者身份识别数据集。它利用了在丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型乙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型乙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型丙型乙型丙型丙型丙型丙型丙型丙型丙