Learning with large-scale unlabeled data has become a powerful tool for pre-training Visual Transformers (VTs). However, prior works tend to overlook that, in real-world scenarios, the input data may be corrupted and unreliable. Pre-training VTs on such corrupted data can be challenging, especially when we pre-train via the masked autoencoding approach, where both the inputs and masked ``ground truth" targets can potentially be unreliable in this case. To address this limitation, we introduce the Token Boosting Module (TBM) as a plug-and-play component for VTs that effectively allows the VT to learn to extract clean and robust features during masked autoencoding pre-training. We provide theoretical analysis to show how TBM improves model pre-training with more robust and generalizable representations, thus benefiting downstream tasks. We conduct extensive experiments to analyze TBM's effectiveness, and results on four corrupted datasets demonstrate that TBM consistently improves performance on downstream tasks.
翻译:学习大规模无标注数据成为预训练视觉Transformer(VT)的强大工具。然而,以往的研究往往忽略了输入数据可能会被损坏和不可靠的情况,在这种情况下进行mask自编码预训练时,输入和掩码“ground truth”目标都可能是不可靠的,这使得在这些损坏的数据上进行VT预训练变得具有挑战性。为了解决这个问题,我们引入了Token Boosting Module(TBM),用作VT的即插即用组件,在经过mask自编码预训练期间有效地使VT学习提取干净和鲁棒的特征。我们提供理论分析,展示了TBM如何通过更具鲁棒性和可泛化性的表示来提高模型预训练,从而有利于下游任务。我们进行了广泛的实验来分析TBM的有效性,四个受损数据集上的结果表明TBM在下游任务中改善了性能。