Smart contracts, known for their immutable nature to ensure trust via automated enforcement, have evolved to require upgradeability due to unforeseen vulnerabilities and the need for feature enhancements post-deployment. This contradiction between immutability and the need for modifications has led to the development of upgradeable smart contracts. These contracts are immutable in principle yet upgradable by design, allowing updates without altering the underlying data or state, thus preserving the contract's intent while allowing improvements. This study aims to understand the application and implications of upgradeable smart contracts on the Ethereum blockchain. By introducing a dataset that catalogs the versions and evolutionary trajectories of smart contracts, the research explores key dimensions: the prevalence and adoption patterns of upgrade mechanisms, the likelihood and occurrences of contract upgrades, the nature of modifications post-upgrade, and their impact on user engagement and contract activity. Through empirical analysis, this study identifies upgradeable contracts and examines their upgrade history to uncover trends, preferences, and challenges associated with modifications. The evidence from analyzing over 44 million contracts shows that only 3% have upgradeable characteristics, with only 0.34% undergoing upgrades. This finding underscores a cautious approach by developers towards modifications, possibly due to the complexity of upgrade processes or a preference for maintaining stability. Furthermore, the study shows that upgrades are mainly aimed at feature enhancement and vulnerability mitigation, particularly when the contracts' source codes are accessible. However, the relationship between upgrades and user activity is complex, suggesting that additional factors significantly affect the use of smart contracts beyond their evolution.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员