Conformal prediction (CP) is a wrapper around traditional machine learning models, giving coverage guarantees under the sole assumption of exchangeability; in classification problems, for a chosen significance level $\varepsilon$, CP guarantees that the error rate is at most $\varepsilon$, irrespective of whether the underlying model is misspecified. However, the prohibitive computational costs of "full" CP led researchers to design scalable alternatives, which alas do not attain the same guarantees or statistical power of full CP. In this paper, we use influence functions to efficiently approximate full CP. We prove that our method is a consistent approximation of full CP, and empirically show that the approximation error becomes smaller as the training set increases; e.g., for $10^{3}$ training points the two methods output p-values that are $<10^{-3}$ apart: a negligible error for any practical application. Our methods enable scaling full CP to large real-world datasets. We compare our full CP approximation (ACP) to mainstream CP alternatives, and observe that our method is computationally competitive whilst enjoying the statistical predictive power of full CP.


翻译:共变预测(CP)是围绕传统机器学习模式的包装(CP),在唯一假设的互换性假设下提供覆盖保障;在分类问题中,对于所选定的重要水平,美元和瓦列普西隆值,CP保证误差率最高为$和瓦列普西隆值,而不论基本模型的描述是否错误。然而, " 全面 " CP的令人望而却步的计算成本导致研究人员设计了可缩放的替代方法,这些替代方法不能达到完全CP的保障或统计能力。在本文中,我们使用影响功能来有效地接近全部CP。我们证明我们的方法是完全CP的近似近似值,并且从经验上表明,随着培训设置的增加,近似误差率会越来越小;例如,10 ⁇ 3美元的培训发现,两种方法的p价值是 < {%-3}美元,而两者相分离:对于任何实际应用来说,一个微不足道的错误。我们的方法能够将整个CP缩成大型真实世界数据集。我们把我们的完全CP接近值与CP替代方法进行比较,我们发现我们的方法在计算上具有竞争力,同时具有计算上具有竞争力。

0
下载
关闭预览

相关内容

这是第25届年度会议,讨论有约束计算的所有方面,包括理论、算法、环境、语言、模型、系统和应用,如决策、资源分配、调度、配置和规划。为了纪念25周年,吉恩·弗洛伊德创作了一本“虚拟卷”来庆祝这个系列会议。信息可以在这里找到。约束编程协会有本系列中以前的会议列表。CP 2019计划将包括展示关于约束技术的高质量科学论文。除了通常的技术轨道外,CP 2019年会议还将有主题轨道。每个赛道都有一个专门的小组委员会,以确保有能力的评审员将审查这些领域的人提交的论文。 官网链接:https://cp2019.a4cp.org/index.html
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
22+阅读 · 2022年2月4日
Arxiv
11+阅读 · 2020年12月2日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员