The impact of convolution neural networks (CNNs) in the supervised settings provided tremendous increment in performance. The representations learned from CNN's operated on hyperspherical manifold led to insightful outcomes in face recognition, face identification and other supervised tasks. A broad range of activation functions is developed with hypersphere intuition which performs superior to softmax in euclidean space. The main motive of this research is to provide insights. First, the stereographic projection is implied to transform data from Euclidean space ($\mathbb{R}^{n}$) to hyperspherical manifold ($\mathbb{S}^{n}$) to analyze the performance of angular margin losses. Secondly, proving both theoretically and practically that decision boundaries constructed on hypersphere using stereographic projection obliges the learning of neural networks. Experiments have proved that applying stereographic projection on existing state-of-the-art angular margin objective functions led to improve performance for standard image classification data sets (CIFAR-10,100). The code is publicly available at: https://github.com/barulalithb/stereo-angular-margin.
翻译:从CNN的超球体操作得到的演示在面部识别、面部识别和其他受监督的任务方面产生了有见地的结果。广泛的激活功能是用高视距直觉开发的,在euclidean空间中,这种超视距优于软马克斯。这一研究的主要动机是提供洞察力。首先,星体预测意味着将数据从欧立底空间($\mathbb{R ⁇ n}$)转换为超球体($\mathb{S ⁇ n}$),以分析角边际损耗的性能。第二,从理论上和实际上证明,在超视距上建立的决定界限是使用星射预测要求学习神经网络的。实验已经证明,对现有状态的角边际目标功能应用星图预测可以提高标准图像分类数据集的性能(CIFAR-10 100)。该代码公开发布于:https://githhub.com/barulalalib/steraa。