Deep neural networks (DNNs) have recently achieved a great success in computer vision and several related fields. Despite such progress, current neural architectures still suffer from catastrophic interference (a.k.a. forgetting) which obstructs DNNs to learn continually. While several state-of-the-art methods have been proposed to mitigate forgetting, these existing solutions are either highly rigid (as regularization) or time/memory demanding (as replay). An intermediate class of methods, based on dynamic networks, has been proposed in the literature and provides a reasonable balance between task memorization and computational footprint. In this paper, we devise a dynamic network architecture for continual learning based on a novel forgetting-free neural block (FFNB). Training FFNB features on new tasks is achieved using a novel procedure that constrains the underlying parameters in the null-space of the previous tasks, while training classifier parameters equates to Fisher discriminant analysis. The latter provides an effective incremental process which is also optimal from a Bayesian perspective. The trained features and classifiers are further enhanced using an incremental "end-to-end" fine-tuning. Extensive experiments, conducted on different challenging classification problems, show the high effectiveness of the proposed method.


翻译:尽管取得了这些进展,但目前的神经结构仍然受到灾难性干扰(a.k.a.greget),阻碍DNNS不断学习。虽然提出了几种最先进的方法来减轻遗忘,但这些现有解决办法要么非常僵化(正规化),要么要求时间/模棱两可(重现),文献中提出了基于动态网络的中间方法,在任务记忆和计算足迹之间提供了合理的平衡。在本文中,我们设计了一个动态网络结构,以不断学习,这种结构阻碍DNNNP不断学习(FFNB)。关于新任务的培训正在采用新的程序,该程序限制前一项任务的空格空空间的基本参数,而培训分类参数相当于对渔业的干扰性分析。后者提供了一种有效的递增过程,从巴伊西亚的角度来说也是最理想的。经过培训的特征和分类人员正在使用一种渐进式的“端到端”的微调方法来进一步强化。在高层次上进行不同的分类,展示了拟议的高难度性实验。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
专知会员服务
32+阅读 · 2021年7月15日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
6+阅读 · 2018年12月10日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Top
微信扫码咨询专知VIP会员