The Helmholtz equation is challenging to solve numerically due to the pollution effect, which often results in a huge ill-conditioned linear system. In this paper, we present a high order wavelet Galerkin method to numerically solve an electromagnetic scattering from a large cavity problem modeled by the 2D Helmholtz equation. The high approximation order and the sparse linear system with uniformly bounded condition numbers offered by wavelets are useful in reducing the pollution effect. Using the direct approach in [B. Han and M. Michelle, Appl. Comp. Harmon. Anal., 53 (2021), 270-331], we present various optimized spline biorthogonal wavelets on a bounded interval. We provide a self-contained proof to show that the tensor product of such wavelets forms a 2D Riesz wavelet in the appropriate Sobolev space. Compared to the coefficient matrix of the finite element method (FEM), when an iterative scheme is applied to the coefficient matrix of our wavelet Galerkin method, much fewer iterations are needed for the relative residuals to be within a tolerance level. Furthermore, for a fixed wavenumber, the number of required iterations is practically independent of the size of the wavelet coefficient matrix, due to the uniformly bounded small condition numbers of such wavelets. In contrast, when an iterative scheme is applied to the FEM coefficient matrix, the number of required iterations doubles as the mesh size for each axis is halved. The implementation can also be done conveniently thanks to the simple structure, the refinability property, and the analytic expression of our wavelet bases.
翻译:Helmholtz方程由于波污染效应而在数值求解中具有很大的挑战性,往往导致一个巨大的病态线性系统。本文提出了一种高阶小波Galerkin方法,用于数值求解由2D Helmholtz方程建模的大腔体电磁散射问题。小波的高近似阶数和具有轻微条件数的稀疏线性系统对于减少波污染效应是有用的。我们使用直接方法在[B. Han和M. Michelle,Appl. Comp. Harmon. Anal.,53(2021年),270-331]中,提出了较好的边界间的优化样条双正交小波函数。我们提供了自包含的证明来证明这些小波的张量积在恰当的Sobolev空间中形成了一个2D Riesz小波。与有限元方法(FEM)的系数矩阵相比,当迭代方法应用于我们的小波Galerkin方法的系数矩阵时,需要远远较少的迭代次数,使相对残差达到容差水平。此外,对于固定的波数,由于这些小波具有统一有界的小条件数,所需的迭代次数在实际上与小波系数矩阵的大小无关。相反,当迭代方法应用于FEM系数矩阵时,在每个轴的网格大小减半时,所需的迭代次数翻倍。由于我们的小波基的简单结构、可细化性和解析表达式,实现也可以方便地进行。