We propose a new framework for efficiently sampling from complex probability distributions using a combination of normalizing flows and elliptical slice sampling (Murray et al., 2010). The central idea is to learn a diffeomorphism, through normalizing flows, that maps the non-Gaussian structure of the target distribution to an approximately Gaussian distribution. We then use the elliptical slice sampler, an efficient and tuning-free Markov chain Monte Carlo (MCMC) algorithm, to sample from the transformed distribution. The samples are then pulled back using the inverse normalizing flow, yielding samples that approximate the stationary target distribution of interest. Our transport elliptical slice sampler (TESS) is optimized for modern computer architectures, where its adaptation mechanism utilizes parallel cores to rapidly run multiple Markov chains for a few iterations. Numerical demonstrations show that TESS produces Monte Carlo samples from the target distribution with lower autocorrelation compared to non-transformed samplers, and demonstrates significant improvements in efficiency when compared to gradient-based proposals designed for parallel computer architectures, given a flexible enough diffeomorphism.


翻译:我们提出了一个新的框架,通过正态化流和椭圆片段抽样(Murray et al。,2010)的组合,高效地从复杂概率分布中采样。其核心思想是通过正态化流学习一个微分同胚,将目标分布的非高斯结构映射到一个近似高斯分布中。然后利用椭圆片段抽样器,一种高效的无调整马尔科夫链蒙特卡罗算法,从转换分布进行抽样。然后使用反向正态化流拉回样本,产生逼近感兴趣的稳态目标分布的样本。我们的交通椭圆片段抽样器(TESS)针对现代计算机体系结构进行了优化,其中其适应机制利用并行内核快速运行多个马尔科夫链进行几次迭代。数值演示表明,与非变换采样器相比,TESS从目标分布产生的蒙特卡罗样本具有更低的自相关性,并且在灵活的微分同胚的情况下,相比为并行计算机体系结构设计的基于梯度的提议,它展示了显着的效率改进。

0
下载
关闭预览

相关内容

【2023新书】随机模型基础,815页pdf
专知会员服务
100+阅读 · 2023年5月10日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【硬核书】树与网络上的概率,716页pdf
专知会员服务
72+阅读 · 2021年12月8日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
【2023新书】随机模型基础,815页pdf
专知会员服务
100+阅读 · 2023年5月10日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【硬核书】树与网络上的概率,716页pdf
专知会员服务
72+阅读 · 2021年12月8日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员