The growth and progression of brain tumors is governed by patient-specific dynamics. Even when the tumor appears well-delineated in medical imaging scans, tumor cells typically already have infiltrated the surrounding brain tissue beyond the visible lesion boundaries. Quantifying and understanding these growth dynamics promises to reveal this otherwise hidden spread and is key to individualized therapies. Current treatment plans for brain tumors, such as radiotherapy, typically involve delineating a standard uniform margin around the visible tumor on imaging scans to target this invisible tumor growth. This "one size fits all" approach is derived from population studies and often fails to account for the nuances of individual patient conditions. Here, we present the framework GliODIL which infers the full spatial distribution of tumor cell concentration from available imaging data based on PDE-constrained optimization. The framework builds on the newly introduced method of Optimizing the Discrete Loss (ODIL), data are assimilated in the solution of the Partial Differential Equations (PDEs) by optimizing a cost function that combines the discrete form of the equations and data as penalty terms. By utilizing consistent and stable discrete approximations of the PDEs, employing a multigrid method, and leveraging automatic differentiation, we achieve computation times suitable for clinical application such as radiotherapy planning. Our method performs parameter estimation in a manner that is consistent with the PDEs. Through a harmonious blend of physics-based constraints and data-driven approaches, GliODIL improves the accuracy of estimating tumor cell distribution and, clinically highly relevant, also predicting tumor recurrences, outperforming all other studied benchmarks.
翻译:暂无翻译