Symbolic regression, the task of extracting mathematical expressions from the observed data $\{ \vx_i, y_i \}$, plays a crucial role in scientific discovery. Despite the promising performance of existing methods, most of them conduct symbolic regression in an \textit{offline} setting. That is, they treat the observed data points as given ones that are simply sampled from uniform distributions without exploring the expressive potential of data. However, for real-world scientific problems, the data used for symbolic regression are usually actively obtained by doing experiments, which is an \textit{online} setting. Thus, how to obtain informative data that can facilitate the symbolic regression process is an important problem that remains challenging. In this paper, we propose QUOSR, a \textbf{qu}ery-based framework for \textbf{o}nline \textbf{s}ymbolic \textbf{r}egression that can automatically obtain informative data in an iterative manner. Specifically, at each step, QUOSR receives historical data points, generates new $\vx$, and then queries the symbolic expression to get the corresponding $y$, where the $(\vx, y)$ serves as new data points. This process repeats until the maximum number of query steps is reached. To make the generated data points informative, we implement the framework with a neural network and train it by maximizing the mutual information between generated data points and the target expression. Through comprehensive experiments, we show that QUOSR can facilitate modern symbolic regression methods by generating informative data.


翻译:符号回归, 从观察到的数据中提取数学表达式的任务 $ ⁇ \ vx_i, y_ ⁇ ⁇, 在科学发现中扮演着关键角色。 尽管现有方法表现良好, 但大多数方法在\ textit{offline} 设置中进行象征性回归。 也就是说, 它们将观察到的数据点作为简单的从统一分布中抽样的数据点, 而没有探索数据的表达潜力。 但是, 对于现实世界的科学问题, 用于符号回归的数据通常通过实验来积极获取, 这是一种设置。 因此, 如何获得有助于符号回归进程的信息化数据, 这仍然是一个重要的问题。 在本文中, 我们提议 QUOSR, 一个基于\ textb{ { { unline\ textbfs} f}}}}} s} 的框架, 仅仅从统一分布中抽样, 而没有探索数据的表达方式。 以迭代方式自动获得信息数据。 具体地说, QOSR接收历史数据点, 产生新的 $ 和 美元 的 重复数据 。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
52+阅读 · 2020年9月7日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
11+阅读 · 2022年9月1日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Arxiv
19+阅读 · 2018年5月17日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员