项目名称: 与加载速率相关的细菌鞭毛相变和运动的多尺度问题

项目编号: No.11272002

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 王晓玲

作者单位: 北京科技大学

项目金额: 90万元

中文摘要: 鞭毛作为细菌运动的推进器,在细菌运动中起重要作用。实验发现细菌鞭毛在粘性流体作用下会发生马氏体相变, 目前正在对其进行研究。我们以实验分析为基础,建立相变模型描述鞭毛相变过程并进行稳定性分析;在非局部和非凸连续介质力学基础上用有限元法对实验现象进行模拟,描述其相变典型特征(形核、长大和两相共存)。进一步实验发现鞭毛相变和运动跟粘性流体流速密切相关,其科学问题为鞭毛相变和运动的多尺度问题,课题将就此展开研究。这里的多尺度涉及空间多尺度和时间多尺度,两个时间尺度:一、加载特征时间尺度(加载率);二、鞭毛与粘性液体间运动产生的粘性时间尺度。这两个时间尺度除与鞭毛几何尺度有相互作用外,两个时间尺度的相互竞争还会引起一个新的空间涌现尺度(相变带之间的间距)。内容包括多尺度效应下:相变载荷条件和其运动规律,相变过程中形核微结构、应力滞后和能量耗散。通过以上工作,预测鞭毛在不同粘性流体中相变和运动规律。

中文关键词: 细菌鞭毛;朗道相变理论;加载速率;有限元;细菌生物膜

英文摘要: The bacterial flagellum, working as a propeller, plays a very important role in the bacterial movement. Recent experiments show that the flagellar filament can undergo a cyclic phase transition under the viscous fluid flowing, now we are working on the martensite phase transition of bacterial flagellar filament under the support of the NSFC. Firstly we made mechanical analysis of the phase transition experiment of the flagellar filament, and got its transition rule; based on this we establish the theoretical model to describe filament’s phase transition under the Kirchhoff rod theory and Ginzberg-Landau phase transition theory, and got the loading (force and displacement) conditions of phase transition instability through the stability analysis; finally based on non-local and non-convex continuum modeling we use finite element method to simulate its phase transition process and successfully capture the main features of flagellar phase transition, such as two-phase coexistence with an interface of finite thickness, phase nucleation and phase growth with interface propagation. Moreover, we find that flagellar phase transition and motion closely relate to the velocity of viscous fluid. The key is the multi-scale problem in the phase transition and motion of flagella. We will further study this problem based on the

英文关键词: Bacterial flagella;Landau phase transition theory;Finite Element Method;Loading rate dependence;Bacterial biofilm

成为VIP会员查看完整内容
0

相关内容

ISAIR2022 的重要日期
专知会员服务
11+阅读 · 2022年3月15日
【硬核书】演化、信息和复杂性的数学分析,504页pdf
专知会员服务
83+阅读 · 2021年9月2日
专知会员服务
23+阅读 · 2021年6月8日
专知会员服务
41+阅读 · 2021年6月2日
专知会员服务
44+阅读 · 2021年5月24日
【AAAI2021最佳论文】多智能体学习中的探索 - 利用
专知会员服务
35+阅读 · 2021年2月6日
【干货书】贝叶斯推断随机过程,449页pdf
专知会员服务
151+阅读 · 2020年8月27日
说服张艺谋,做出冰立方,冬奥会的另一个世界纪录
这可能是冬奥会藏得最深的黑科技了
量子位
0+阅读 · 2022年2月18日
微软出“奇招”,用沸腾液体为数据中心降温
微软研究院AI头条
0+阅读 · 2021年5月21日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2020年4月12日
UNITER: Learning UNiversal Image-TExt Representations
Arxiv
23+阅读 · 2019年9月25日
小贴士
相关主题
相关VIP内容
ISAIR2022 的重要日期
专知会员服务
11+阅读 · 2022年3月15日
【硬核书】演化、信息和复杂性的数学分析,504页pdf
专知会员服务
83+阅读 · 2021年9月2日
专知会员服务
23+阅读 · 2021年6月8日
专知会员服务
41+阅读 · 2021年6月2日
专知会员服务
44+阅读 · 2021年5月24日
【AAAI2021最佳论文】多智能体学习中的探索 - 利用
专知会员服务
35+阅读 · 2021年2月6日
【干货书】贝叶斯推断随机过程,449页pdf
专知会员服务
151+阅读 · 2020年8月27日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员