We study whether automatically-induced prompts that effectively extract information from a language model can also be used, out-of-the-box, to probe other language models for the same information. After confirming that discrete prompts induced with the AutoPrompt algorithm outperform manual and semi-manual prompts on the slot-filling task, we demonstrate a drop in performance for AutoPrompt prompts learned on a model and tested on another. We introduce a way to induce prompts by mixing language models at training time that results in prompts that generalize well across models. We conduct an extensive analysis of the induced prompts, finding that the more general prompts include a larger proportion of existing English words and have a less order-dependent and more uniform distribution of information across their component tokens. Our work provides preliminary evidence that it's possible to generate discrete prompts that can be induced once and used with a number of different models, and gives insights on the properties characterizing such prompts.
翻译:我们研究从语言模型中有效提取信息的自动引发的提示是否也可以用于为同一信息探测其他语言模型。在确认自动促进算法超模手动产生的离散提示和空档填充任务中的半手动提示后,我们演示了自动促进提示在模型上学习并在另一个模型上测试的性能下降。我们引入了一种方法,通过在培训时混合语言模型来激发提示,从而在各种模型中进行广泛普及的提示。我们广泛分析了导出提示,发现较普通的提示包括了现有英文词的较大比例,并且其各个组成部分符号的信息分布不那么有条不紊和更加统一。我们的工作提供了初步证据,证明有可能生成离散提示,可以一次性生成,并用不同的模型来使用,并深入了解这些提示的特性。