This paper addresses the challenging problem of composite synchronization and learning control in a network of multi-agent robotic manipulator systems operating under heterogeneous nonlinear uncertainties within a leader-follower framework. A novel two-layer distributed adaptive learning control strategy is introduced, comprising a first-layer distributed cooperative estimator and a second-layer decentralized deterministic learning controller. The primary objective of the first layer is to facilitate each robotic agent's estimation of the leader's information. The second layer is responsible for both enabling individual robot agents to track desired reference trajectories and accurately identifying and learning their nonlinear uncertain dynamics. The proposed distributed learning control scheme represents an advancement in the existing literature due to its ability to manage robotic agents with completely uncertain dynamics including uncertain mass matrices. This framework allows the robotic control to be environment-independent which can be used in various settings, from underwater to space where identifying system dynamics parameters is challenging. The stability and parameter convergence of the closed-loop system are rigorously analyzed using the Lyapunov method. Numerical simulations conducted on multi-agent robot manipulators validate the effectiveness of the proposed scheme. The identified nonlinear dynamics can be saved and reused whenever the system restarts.
翻译:暂无翻译