Let $G$ be a multigraph with $n$ vertices and $e>4n$ edges, drawn in the plane such that any two parallel edges form a simple closed curve with at least one vertex in its interior and at least one vertex in its exterior. Pach and T\'oth (A Crossing Lemma for Multigraphs, SoCG 2018) extended the Crossing Lemma of Ajtai et al. (Crossing-free subgraphs, North-Holland Mathematics Studies, 1982) and Leighton (Complexity issues in VLSI, Foundations of computing series, 1983) by showing that if no two adjacent edges cross and every pair of nonadjacent edges cross at most once, then the number of edge crossings in $G$ is at least $\alpha e^3/n^2$, for a suitable constant $\alpha>0$. The situation turns out to be quite different if nonparallel edges are allowed to cross any number of times. It is proved that in this case the number of crossings in $G$ is at least $\alpha e^{2.5}/n^{1.5}$. The order of magnitude of this bound cannot be improved.
翻译:$G$应该是一个包含美元脊椎和美元>4n 边缘的多重曲线,在平面上绘制,使任何两个平行边缘形成一个简单的封闭曲线,其内部至少有一个顶点,其外部至少有一个顶点。Pach和T\'oth(Mexering Lemma for Midigraphes, SoCG 2018)延长了Ajtai等人的十字路面(Crossing-form subgraphes,North-Hol和数学研究,1982年)和L88on(VLSI的复杂问题, 计算系列的基础,1983年),通过显示如果没有两个相邻的边缘和每对非对顶点边缘最多一次,那么美元中的边缘过境点数目至少是$alpha e3/n2美元,以适合的恒定值$/alpha>0美元。如果允许非平行边缘跨越任何几次,情况就会大不相同。在本案中,美元/美元之间的跨边界数量不能改进。