We study the minimum vertex cover problem in the following stochastic setting. Let $G$ be an arbitrary given graph, $p \in (0, 1]$ a parameter of the problem, and let $G_p$ be a random subgraph that includes each edge of $G$ independently with probability $p$. We are unaware of the realization $G_p$, but can learn if an edge $e$ exists in $G_p$ by querying it. The goal is to find an approximate minimum vertex cover (MVC) of $G_p$ by querying few edges of $G$ non-adaptively. This stochastic setting has been studied extensively for various problems such as minimum spanning trees, matroids, shortest paths, and matchings. To our knowledge, however, no non-trivial bound was known for MVC prior to our work. In this work, we present a: * $(2+\epsilon)$-approximation for general graphs which queries $O(\frac{1}{\epsilon^3 p})$ edges per vertex, and a * $1.367$-approximation for bipartite graphs which queries $poly(1/p)$ edges per vertex. Additionally, we show that at the expense of a triple-exponential dependence on $p^{-1}$ in the number of queries, the approximation ratio can be improved down to $(1+\epsilon)$ for bipartite graphs. Our techniques also lead to improved bounds for bipartite stochastic matching. We obtain a $0.731$-approximation with nearly-linear in $1/p$ per-vertex queries. This is the first result to break the prevalent $(2/3 \sim 0.66)$-approximation barrier in the $poly(1/p)$ query regime, improving algorithms of [Behnezhad et al; SODA'19] and [Assadi and Bernstein; SOSA'19].
翻译:我们研究最低顶点在以下的随机设置中包含问题。 让$G$成为任意的给定图, $p $@in (0, 1) 是一个问题参数, 让$G_p$成为一个随机的子谱, 包括每个G$的边缘, 概率为$p美元。 我们不知道是否实现了$G_ p$, 但是可以通过查询来了解是否在$G_ p$中存在一个边缘值。 目标是通过查询, 找到一个大约为G_ p$的最小顶点覆盖( MVC) 。 目标是找到一个大约为$G_ p$的最低顶点覆盖( MVC) 。 通过查询, $$$( G$ $ ( $ $ $ 美元 ) 的顶点( 美元 美元 美元 美元 ) 。 这个随机设置已被广泛研究, 例如最小的树、 木质、 最短的路径和匹配。 然而, 在我们的工作之前, 没有已知的 MMVC 。 在一般图表中, $( $ ( $) i- lical) list) a liver listration listration ( list) list) dication (美元 list) list) a.