Enumerating all connected induced subgraphs of a given order $k$ is a computationally difficult problem. Elbassioni has proposed an algorithm based on reverse search with a delay of $O(k\cdot min\{(n-k),k\Delta\}\cdot(k(\Delta+\log{k})+\log{n}))$, where $n$ is the number of vertices and $\Delta$ is the maximum degree of input graph \cite{6}. In this short note, we present an algorithm with an improved delay of $O(k\cdot min\{(n-k),k\Delta\}\cdot(k\log{\Delta}+\log{n}))$ by introducing a new neighborhood definition. This also improves upon the current best delay bound $O(k^2\Delta)$\cite{4} for this problem for large $k$.
翻译:列出给定顺序的所有关联诱导子图 $k$ 是一个计算困难的问题。 Elbassioni 提出了一个基于反向搜索的算法, 延迟时间为$O( k\ cdot min ⁇ ( n- k), k\ Delta ⁇ cdot( k (\ Delta\ log{ k}) k( k (\ Delta\ log})\ log{ n}) $, 其中 $n 是 vertics 的数量, $\ delta$ 是 输入图的最大程度 \ cite{ 6} 。 在此简短的注释中, 我们提出了一个算法, 延迟时间为$( k\ cdddot min{ (n- k)), kk\ Delta ⁇ cdot( k\ d\ Delta\ log{ n}), 延迟时间为$O( k_ 2\ Delta) $\ cite{ 4} 。 这也会改善目前对大 问题的最大延迟时间 $ O ( k$ ( k) 。