We present the Assignment-Maximization Spectral Attribute removaL (AMSAL) algorithm, which aims at removing information from neural representations when the information to be erased is implicit rather than directly being aligned to each input example. Our algorithm works by alternating between two steps. In one, it finds an assignment of the input representations to the information to be erased, and in the other, it creates projections of both the input representations and the information to be erased into a joint latent space. We test our algorithm on an extensive array of datasets, including a Twitter dataset with multiple guarded attributes, the BiasBios dataset and the BiasBench benchmark. The latter benchmark includes four datasets with various types of protected attributes. Our results demonstrate that bias can often be removed in our setup. We also discuss the limitations of our approach when there is a strong entanglement between the main task and the information to be erased.
翻译:我们展示了指定-最大光谱属性雷莫瓦( AMSAL) 算法, 目的是在需要删除的信息为隐含信息而不是直接与每个输入示例对齐时, 将信息从神经表层中去除。 我们的算法在两个步骤之间交替运行。 在其中, 我们发现将输入表达法指定给要删除的信息, 在另一个步骤中, 我们发现将输入表达法和要删除的信息都投射到一个共同的潜在空间。 我们测试了我们的算法, 在一系列广泛的数据集上, 包括具有多个保护属性的Twitter数据集、 Bias Bios 数据集和 Bias Bench 基准。 后一个基准包括四个包含不同类型受保护属性的数据集。 我们的结果表明, 在设置中往往可以消除偏差。 当主要任务与要删除的信息存在强烈的关联时, 我们还讨论了我们方法的局限性 。