Although data-free incremental learning methods are memory-friendly, accurately estimating and counteracting representation shifts is challenging in the absence of historical data. This paper addresses this thorny problem by proposing a novel incremental learning method inspired by human analogy capabilities. Specifically, we design an analogy-making mechanism to remap the new data into the old class by prompt tuning. It mimics the feature distribution of the target old class on the old model using only samples of new classes. The learnt prompts are further used to estimate and counteract the representation shift caused by fine-tuning for the historical prototypes. The proposed method sets up new state-of-the-art performance on four incremental learning benchmarks under both the class and domain incremental learning settings. It consistently outperforms data-replay methods by only saving feature prototypes for each class. It has almost hit the empirical upper bound by joint training on the Core50 benchmark. The code will be released at \url{https://github.com/ZhihengCV/A-Prompts}.


翻译:尽管无数据增量学习方法对内存友好,但在历史数据缺失的情况下,准确估计与对抗表示漂移是具有挑战性的。本文提出了一种受人类类比能力启发的增量学习方法,通过设计一个类比机制来实现新数据对旧类别的重新映射,以调整其表示。通过在新类别的样本上模仿旧模型目标旧类别的特征分布,此机制调整提示方式以实现表示的迁移,主要应用于历史原型的微调。该方法在类和域增量学习设置下为四个增量学习基准设置了新的最先进性能。它仅保存每个类别的特征原型,却比数据重放方法表现更好。在 Core50 数据集上的联合训练,该方法几乎达到了经验上限。代码将在 \url{https://github.com/ZhihengCV/A-Prompts} 中公布。

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
22篇论文!增量学习/终生学习论文资源列表
专知
32+阅读 · 2018年12月27日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2023年2月7日
Arxiv
31+阅读 · 2023年1月8日
Arxiv
19+阅读 · 2021年6月15日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
22篇论文!增量学习/终生学习论文资源列表
专知
32+阅读 · 2018年12月27日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员