A family $\mathcal{F}$ of sets satisfies the $(p,q)$-property if among every $p$ members of $\mathcal{F}$, some $q$ can be pierced by a single point. The celebrated $(p,q)$-theorem of Alon and Kleitman asserts that for any $p \geq q \geq d+1$, any family $\mathcal{F}$ of compact convex sets in $\mathbb{R}^d$ that satisfies the $(p,q)$-property can be pierced by a finite number $c(p,q,d)$ of points. A similar theorem with respect to piercing by $(d-1)$-dimensional flats, called $(d-1)$-transversals, was obtained by Alon and Kalai. In this paper we prove the following result, which can be viewed as an $(\aleph_0,k+2)$-theorem with respect to $k$-transversals: Let $\mathcal{F}$ be an infinite family of closed balls in $\mathbb{R}^d$, and let $0 \leq k < d$. If among every $\aleph_0$ elements of $\mathcal{F}$, some $k+2$ can be pierced by a $k$-dimensional flat, then $\mathcal{F}$ can be pierced by a finite number of $k$-dimensional flats. The same result holds also for a wider class of families which consist of \emph{near-balls}, to be defined below. This is the first $(p,q)$-theorem in which the assumption is weakened to an $(\infty,\cdot)$ assumption. Our proofs combine geometric and topological tools.


翻译:暂无翻译

0
下载
关闭预览

相关内容

这个新版本的工具会议系列恢复了从1989年到2012年的50个会议的传统。工具最初是“面向对象语言和系统的技术”,后来发展到包括软件技术的所有创新方面。今天许多最重要的软件概念都是在这里首次引入的。2019年TOOLS 50+1在俄罗斯喀山附近举行,以同样的创新精神、对所有与软件相关的事物的热情、科学稳健性和行业适用性的结合以及欢迎该领域所有趋势和社区的开放态度,延续了该系列。 官网链接:http://tools2019.innopolis.ru/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
53+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年7月27日
Arxiv
0+阅读 · 2023年7月25日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
53+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员