In this paper, we study community detection when we observe $m$ sparse networks and a high dimensional covariate matrix, all encoding the same community structure among $n$ subjects. In the asymptotic regime where the number of features $p$ and the number of subjects $n$ grows proportionally, we derive an exact formula of asymptotic minimum mean square error (MMSE) for estimating the common community structure in the balanced two block case. The formula implies the necessity of integrating information from multiple data sources. Consequently, it induces a sharp threshold of phase transition between the regime where detection (i.e., weak recovery) is possible and the regime where no procedure performs better than a random guess. The asymptotic MMSE depends on the covariate signal-to-noise ratio in a more subtle way than the phase transition threshold does. In the special case of $m=1$, our asymptotic MMSE formula complements the pioneering work of Deshpande et. al. (2018) which found the sharp threshold when $m=1$.
翻译:在本文中,当我们观测到$m0的零星网络和高维共变矩阵时,我们研究社区探测,这些网络和高维共变矩阵都将相同的社区结构编码在$n$的主体之间。在零食制度下,特征的数量和对象的数量成比例增长,我们得出一个精确的公式,用于估算平衡的两块情况下的共同社区结构。这个公式意味着必须整合来自多个数据源的信息。因此,它引出一个尖锐的阶段性转变门槛,在这种制度下,检测(即薄弱的恢复)是可能的,而没有任何程序比随机猜测更好的制度。无症状MMSE以比阶段转换门槛更微妙的方式取决于共性信号到噪音的比率。在1美元的特殊案例中,我们的无症状MMSE公式补充了Deshpande等人的开创性工作(2018年),在1美元时发现了尖锐的门槛。