We develop a new statistical model to analyse time-varying ranking data. The model can be used with a large number of ranked items, accommodates exogenous time-varying covariates and partial rankings, and is estimated via the maximum likelihood in a straightforward manner. Rankings are modelled using the Plackett-Luce distribution with time-varying worth parameters that follow a mean-reverting time series process. To capture the dependence of the worth parameters on past rankings, we utilise the conditional score in the fashion of the generalised autoregressive score (GAS) models. Simulation experiments show that the small-sample properties of the maximum-likelihood estimator improve rapidly with the length of the time series and suggest that statistical inference relying on conventional Hessian-based standard errors is usable even for medium-sized samples. In an empirical study, we apply the model to the results of the Ice Hockey World Championships. We also discuss applications to rankings based on underlying indices, repeated surveys, and non-parametric efficiency analysis.
翻译:我们开发了一个新的统计模型来分析时间变化的排名数据。该模型可以与大量排名项目一起使用,包括外源时间变化的共和和部分排名,并且通过最有可能的方式直接估算。排序采用Plackett-Luce分布模型,并附有时间变化价值参数,并遵循平均翻转时间序列过程。为了了解价值参数对过去排名的依赖性,我们用通用自动递减评分(GAS)模式来使用有条件评分。模拟实验表明,最大类似估计值的小型分布特性随着时间序列的长度而迅速改善,并表明统计推论依赖传统的赫斯标准错误,甚至可用于中等规模的样本。在一项实验研究中,我们对冰冰世界锦标赛的结果采用该模型。我们还讨论了根据基本指数、重复调查和非参数效率分析对评级的应用。