Neural style transfer is a powerful computer vision technique that can incorporate the artistic "style" of one image to the "content" of another. The underlying theory behind the approach relies on the assumption that the style of an image is represented by the Gram matrix of its features, which is typically extracted from pre-trained convolutional neural networks (e.g., VGG-19). This idea does not straightforwardly extend to time series stylization since notions of style for two-dimensional images are not analogous to notions of style for one-dimensional time series. In this work, a novel formulation of time series style transfer is proposed for the purpose of synthetic data generation and enhancement. We introduce the concept of stylized features for time series, which is directly related to the time series realism properties, and propose a novel stylization algorithm, called StyleTime, that uses explicit feature extraction techniques to combine the underlying content (trend) of one time series with the style (distributional properties) of another. Further, we discuss evaluation metrics, and compare our work to existing state-of-the-art time series generation and augmentation schemes. To validate the effectiveness of our methods, we use stylized synthetic data as a means for data augmentation to improve the performance of recurrent neural network models on several forecasting tasks.


翻译:神经风格转换是一种强大的计算机视觉技术,可以将一个图像的艺术“风格”与另一个图像的“内容”融合在一起。该方法背后的理论依据的假设是,一个图像的风格以其特征的格拉姆矩阵(Gram 矩阵)为代表,该矩阵通常是从预先训练的进化神经神经网络(如VGG-19)中提取的。这一想法并不直接延伸到时间序列的星体化,因为二维图像的风格概念与一维时间序列的风格概念并不类似。在这项工作中,为了合成数据生成和增强的目的,提出了时间序列风格转换的新构思。我们引入了时间序列的星体化特征概念,它与时间序列的现实特性直接相关,并提出了一种叫作StylateTime的新颖的星体化算法,它使用明确的特征提取技术将一个时序列的基本内容(趋势)与另一个时序(分配属性)的风格组合。此外,我们讨论评估指标,并将我们的工作与现有的时序时间序列生成和增强系统计划进行比较。我们使用若干个数据周期性模型的合成预测方法,用以验证我们不断改进数据预测的方法。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
33+阅读 · 2022年2月15日
Arxiv
24+阅读 · 2021年3月4日
Arxiv
13+阅读 · 2020年8月3日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员