Existing Score-based Generative Models (SGMs) can be categorized into constrained SGMs (CSGMs) or unconstrained SGMs (USGMs) according to their parameterization approaches. CSGMs model the probability density functions as Boltzmann distributions, and assign their predictions as the negative gradients of some scalar-valued energy functions. On the other hand, USGMs employ flexible architectures capable of directly estimating scores without the need to explicitly model energy functions. In this paper, we demonstrate that the architectural constraints of CSGMs may limit their score-matching ability. In addition, we show that USGMs' inability to preserve the property of conservativeness may lead to serious sampling inefficiency and degraded sampling performance in practice. To address the above issues, we propose Quasi-Conservative Score-based Generative Models (QCSGMs) for keeping the advantages of both CSGMs and USGMs. Our theoretical derivations demonstrate that the training objective of QCSGMs can be efficiently integrated into the training processes by leveraging the Hutchinson trace estimator. In addition, our experimental results on the Cifar-10, Cifar-100, ImageNet, and SVHN datasets validate the effectiveness of QCSGMs. Finally, we justify the advantage of QCSGMs using an example of a one-layered autoencoder.
翻译:现有基于分数的生成模型(SGM)可根据其参数化方法分为限制的 SGM(CSGMs)或不受限制的 SGM(USGMs) 。 CSGMs 将概率密度功能作为Boltzmann分布的模型,并将其预测划为某些具有卡路里价值的能源功能的负梯度。另一方面,USGMs采用能够直接估计分数的灵活结构,而无需明确模型化能源功能。在本文中,我们证明CSGMs的建筑限制可能限制其得分能力。此外,我们表明,USGMs无法保存保守性特性可能导致严重取样效率低下和实践中的取样性能退化。为了解决上述问题,我们提议采用“准-保守分数模型”的预测值模型(QCSGGMs),以保持CSGMs和USGM的优势。我们的理论推导表明,通过利用哈钦森追踪仪表估测算,可以有效地将QCS-CS-10的训练目标纳入培训进程。此外,我们利用CSNet-CS-CS-CS-CS-CS-CS-CS-CS-CS-CS-CAR的最后数据效率验证的实验性能、CS-CS-CS-CS-CS-S-CS-S-CAR-S-CS-S-CS-S-CAR-CAR-CAR-CAR-CAR的优势。