In task fMRI analysis, OLS is typically used to estimate task-induced activation in the brain. Since task fMRI residuals often exhibit temporal autocorrelation, it is common practice to perform prewhitening prior to OLS to satisfy the assumption of residual independence, equivalent to GLS. While theoretically straightforward, a major challenge in prewhitening in fMRI is accurately estimating the residual autocorrelation at each location of the brain. Assuming a global autocorrelation model, as in several fMRI software programs, may under- or over-whiten particular regions and fail to achieve nominal false positive control across the brain. Faster multiband acquisitions require more sophisticated models to capture autocorrelation, making prewhitening more difficult. These issues are becoming more critical now because of a trend towards subject-level analysis, where prewhitening has a greater impact than in group-average analyses. In this article, we first thoroughly examine the sources of residual autocorrelation in multiband task fMRI. We find that residual autocorrelation varies spatially throughout the cortex and is affected by the task, the acquisition method, modeling choices, and individual differences. Second, we evaluate the ability of different AR-based prewhitening strategies to effectively mitigate autocorrelation and control false positives. We find that allowing the prewhitening filter to vary spatially is the most important factor for successful prewhitening, even more so than increasing AR model order. To overcome the computational challenge associated with spatially variable prewhitening, we developed a computationally efficient R implementation based on parallelization and fast C++ backend code. This implementation is included in the open source R package BayesfMRI.


翻译:在任务 fMRI 分析中, OLS 通常用于估算大脑中任务引发的激活。 由于任务 FMRI 残留通常会显示时间上的自动反向关系,因此通常的做法是在 OLS 之前进行预白,以满足剩余独立性的假设, 相当于 GLS 。 虽然理论上直截了当, 但是在 FMRI 中,预白的主要挑战是准确估计大脑每个位置的剩余自动反向关系。 假设全球自动反向关系模式, 如在多个 FMRI 过滤软件程序中一样, 任务在特定区域下或超白, 无法在大脑中实现名义上虚假的正控。 加速多波段获取的多波段空端空间偏移需要更先进的模型, 以捕捉自动反向关系, 使预变速更加困难。 这些问题现在变得更加关键, 是因为主题分析的趋势, 即预白前影响大于集体平均分析。 在本篇文章中, 我们首先彻底地检查了多波层平流任务前的自动反向关系源。 我们发现, 甚至在多波段平流内部任务组合中, 的剩余自动变异变异, 并受了内部变异变变 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员