We exhibit a randomized algorithm which given a matrix $A\in \mathbb{C}^{n\times n}$ with $\|A\|\le 1$ and $\delta>0$, computes with high probability an invertible $V$ and diagonal $D$ such that $\|A-VDV^{-1}\|\le \delta$ using $O(T_{MM}(n)\log^2(n/\delta))$ arithmetic operations, in finite arithmetic with $O(\log^4(n/\delta)\log n)$ bits of precision. Here $T_{MM}(n)$ is the number of arithmetic operations required to multiply two $n\times n$ complex matrices numerically stably, known to satisfy $T_{MM}(n)=O(n^{\omega+\eta})$ for every $\eta>0$ where $\omega$ is the exponent of matrix multiplication (Demmel et al., Numer. Math., 2007). Our result significantly improves the previously best known provable running times of $O(n^{10}/\delta^2)$ arithmetic operations for diagonalization of general matrices (Armentano et al., J. Eur. Math. Soc., 2018), and (with regards to the dependence on $n$) $O(n^3)$ arithmetic operations for Hermitian matrices (Dekker and Traub, Lin. Alg. Appl., 1971). It is the first algorithm to achieve nearly matrix multiplication time for diagonalization in any model of computation (real arithmetic, rational arithmetic, or finite arithmetic), thereby matching the complexity of other dense linear algebra operations such as inversion and $QR$ factorization up to polylogarithmic factors. The proof rests on two new ingredients. (1) We show that adding a small complex Gaussian perturbation to any matrix splits its pseudospectrum into $n$ small well-separated components. In particular, this implies that the eigenvalues of the perturbed matrix have a large minimum gap, a property of independent interest in random matrix theory. (2) We give a rigorous analysis of Roberts' Newton iteration method (Roberts, Int. J. Control, 1980) for computing the sign function of a matrix in finite arithmetic, itself an open problem in numerical analysis since at least 1986.


翻译:我们展示了一种随机的算法, 它给出了一个基数 $A\ in\ mathbb{C\\\\\ deltime n}, 基數 $ 美元, 數值 1 美元 和 美元 delta> 美元, 高概率地计算了一个不可逆的 美元 和 diagonal $ 美元 美元 。 已知能满足 $T\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 美元 的, 以美元计算计算算算算算法, 基數值中的 美元 。 基數值中, 數值中的數值數值數值數值數值, 數值中的數值數值數值數值, 數值中的數值數值數值數值數值數值數值數值數值數值。 數值中的數值數值數值數值數值數值數值數值數值數數值數數數值數值數數數, 。 數數數數數數數數的數數數數數數數的數值數值數值數值數值數值數值數值數值數值數值數值數值數值數值數值數值數值數值數值數值數數, 的數, 。 的數的數的數數數的數數的數數數數數數數數數數數數數數數數數數數數數數數數數數數數數數數數數數數數數數, 。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
0+阅读 · 2022年4月14日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员