We study the statistical inference of nonlinear stochastic approximation algorithms utilizing a single trajectory of Markovian data. Our methodology has practical applications in various scenarios, such as Stochastic Gradient Descent (SGD) on autoregressive data and asynchronous Q-Learning. By utilizing the standard stochastic approximation (SA) framework to estimate the target parameter, we establish a functional central limit theorem for its partial-sum process, $\boldsymbol{\phi}_T$. To further support this theory, we provide a matching semiparametric efficient lower bound and a non-asymptotic upper bound on its weak convergence, measured in the L\'evy-Prokhorov metric. This functional central limit theorem forms the basis for our inference method. By selecting any continuous scale-invariant functional $f$, the asymptotic pivotal statistic $f(\boldsymbol{\phi}_T)$ becomes accessible, allowing us to construct an asymptotically valid confidence interval. We analyze the rejection probability of a family of functionals $f_m$, indexed by $m \in \mathbb{N}$, through theoretical and numerical means. The simulation results demonstrate the validity and efficiency of our method.
翻译:我们利用Markovian 数据的单一轨迹研究非线性随机近似算法的统计推断值。 我们的方法在各种情景中具有实际应用, 如关于自动递减数据和无同步Q学习的Stochatic 梯度底部(SGD SGD ) 。 通过使用标准的随机近似(SA) 框架来估计目标参数, 我们为部分和过程设定了一个功能核心限制值。 为了进一步支持这一理论, 我们提供了匹配的半对称高效低约束值和非防患性上限, 其趋同性以L\'evy- Prokhorov 度衡量。 这个功能中心值限制构成了我们推断方法的基础。 通过选择任何连续的缩放变量功能 $f, 我们为部分和部分总和(\boldsyysyymbol_hphi ⁇ T) 设定了一个功能中枢轴值关键统计 $f(\boldsyysymbol=T), 允许我们构建一个具有系统有效信任度的间隔。 我们分析了功能性组合的拒绝概率 $ 和以数字 方法演示 $\\\\ expeal expeal a by ex expealmental ypeal res ylemental by by $_ a ylementalmental ypeal ypeal ypeal by by $__ a ypealb ex yal ylemental