We present and prove closed form expressions for some families of binomial determinants with signed Kronecker deltas that are located along an arbitrary diagonal in the corresponding matrix. They count cyclically symmetric rhombus tilings of hexagonal regions with triangular holes. We extend a previous systematic study of these families, where the locations of the Kronecker deltas depended on an additional parameter, to families with negative Kronecker deltas. By adapting Zeilberger's holonomic ansatz to make it work for our problems, we can take full advantage of computer algebra tools for symbolic summation. This, together with the combinatorial interpretation, allows us to realize some new determinantal relationships. From there, we are able to resolve all remaining open conjectures related to these determinants, including one from 2005 due to Lascoux and Krattenthaler.
翻译:我们展示并证明一些二进制决定因素的家庭的封闭形式表达方式,这些定义在相应的矩阵中沿着任意的二进制对角线设置。 它们计算出带有三角洞的六边形区域的周期性对称矩形平流。 我们对这些家庭进行了先前的系统研究, Kronecker 三角形的位置依赖于额外的参数,这些家庭都使用否定的克朗克尔三角形。 通过调整Zeilberger Holonomic ansatz, 使之适合我们的问题, 我们可以充分利用计算机代数工具来进行符号比对。 这与组合解释一起,让我们得以实现一些新的决定因素关系。 从那里,我们可以解决所有与这些决定因素相关的开放的预测, 包括2005年由Lascuux和Krattenthaler带来的预测。