Given a graph $G = (V,E)$, a threshold function $t~ :~ V \rightarrow \mathbb{N}$ and an integer $k$, we study the Harmless Set problem, where the goal is to find a subset of vertices $S \subseteq V$ of size at least $k$ such that every vertex $v\in V$ has less than $t(v)$ neighbors in $S$. We enhance our understanding of the problem from the viewpoint of parameterized complexity. Our focus lies on parameters that measure the structural properties of the input instance. We show that the problem is W[1]-hard parameterized by a wide range of fairly restrictive structural parameters such as the feedback vertex set number, pathwidth, treedepth, and even the size of a minimum vertex deletion set into graphs of pathwidth and treedepth at most three. We also show that the Harmless Set problem with majority thresholds is W[1]-hard when parameterized by the treewidth of the input graph. We prove that the Harmless Set problem can be solved in polynomial time on graph with bounded cliquewidth. On the positive side, we obtain fixed-parameter algorithms for the problem with respect to neighbourhood diversity and twin cover. We show that the problem parameterized by the solution size is fixed parameter tractable on planar graphs. We thereby resolve two open questions stated in C. Bazgan and M. Chopin (2014) concerning the complexity of Harmless Set parameterized by the treewidth of the input graph and on planar graphs with respect to the solution size.
翻译:鉴于GG = (V,E) 美元, 门槛函数 $t~ : ~ V\ rightrow \ mathbb{N} 美元和整数 美元, 我们研究无伤害的Set 问题, 目标是找到一个脊椎的子集 $S = subseteq V$, 其大小至少为 $k$, 使每个顶端的美元和树深度的图示在$S$(v) 美元。 我们从参数化的复杂度角度出发, 提高了我们对问题的理解。 我们的焦点在于测量输入实例的结构属性的参数。 我们显示, 问题是W[ 1] 硬的参数, 由一系列相当限制性的结构参数组成, 例如反馈的脊椎设置数、 路径宽度、 树深度, 甚至最小的脊椎删除的图的大小。 我们通过输入图的树形结构图的参数参数参数的参数来测量。 我们通过固定的平面平面的平面的平面平面图, 问题可以通过固定的平面平面的平面的平面的平面平面的平面的平面的平面图来解决。