For a graph class $\mathcal{C}$, the $\mathcal{C}$-Edge-Deletion problem asks for a given graph $G$ to delete the minimum number of edges from $G$ in order to obtain a graph in $\mathcal{C}$. We study the $\mathcal{C}$-Edge-Deletion problem for $\mathcal{C}$ the permutation graphs, interval graphs, and other related graph classes. It follows from Courcelle's Theorem that these problems are fixed parameter tractable when parameterized by treewidth. In this paper, we present concrete FPT algorithms for these problems. By giving explicit algorithms and analyzing these in detail, we obtain algorithms that are significantly faster than the algorithms obtained by using Courcelle's theorem.
翻译:对于一个图形类 $\ mathcal{C} $\ mathcal{C} $\ mathcal{C} $- Edge- delettion 问题, 要求用一个给定的图形 $G$ 来从$G$中删除最小边缘数, 以便获得一个以$\ mathcal{C} $- Edge- deletication 问题的图表 $\ mathcal{C} $ mathcal{C} $ 。 根据Courcelle 的理论, 这些问题在用树枝参数参数参数参数化时是固定的参数可移动的 。 在本文中, 我们用具体的 FPT 算法来描述这些问题 。 通过提供明确的算法并详细分析这些算法, 我们获得的算法大大快于 Courcelle 的算法 。