Most of the approaches published in the literature to construct S-boxes via Cellular Automata (CA) work by either iterating a finite CA for several time steps, or by a one-shot application of the global rule. The main characteristic that brings together these works is that they employ a single CA rule to define the vectorial Boolean function of the S-box. In this work, we explore a different direction for the design of S-boxes that leverages on Orthogonal CA (OCA), i.e. pairs of CA rules giving rise to orthogonal Latin squares. The motivation stands on the facts that an OCA pair already defines a bijective transformation, and moreover the orthogonality property of the resulting Latin squares ensures a minimum amount of diffusion. We exhaustively enumerate all S-boxes generated by OCA pairs of diameter $4 \le d \le 6$, and measure their nonlinearity. Interestingly, we observe that for $d=4$ and $d=5$ all S-boxes are linear, despite the underlying CA local rules being nonlinear. The smallest nonlinear S-boxes emerges for $d=6$, but their nonlinearity is still too low to be used in practice. Nonetheless, we unearth an interesting structure of linear OCA S-boxes, proving that their Linear Components Space (LCS) is itself the image of a linear CA, or equivalently a polynomial code. We finally classify all linear OCA S-boxes in terms of their generator polynomials.
翻译:文献中公布的通过 Cellulal Automata (CA) 工作来构建 Sboxes 的多数方法, 要么是重复一个限定 CA 以几个时间步骤, 要么是一次性应用全球规则。 这些作品的主要特征是它们使用一个单一 CA 规则来定义 Sbox 的矢量 Boolean 函数。 在这项工作中, 我们探索一个不同的方向来设计 S boxes, 利用 Orthogonal CA( OCA), 即导致拉丁方形正方形的 CA 规则。 动机在于一个事实, 即 OCA 配对已经定义了一个双向式的 CA, 以及由此生成的拉丁方的正态属性属性属性保证了最小的传播量 。 我们详尽地列出了由直径为 4 le d d d d le 6 6 的OCA( ) 生成的所有 S boxes 设计, 也就是所有 Sboxes 的 CA 线性规则都是线性, 尽管其直线性规则是非直径直线性 CARC 。</s>