Most of the approaches published in the literature to construct S-boxes via Cellular Automata (CA) work by either iterating a finite CA for several time steps, or by a one-shot application of the global rule. The main characteristic that brings together these works is that they employ a single CA rule to define the vectorial Boolean function of the S-box. In this work, we explore a different direction for the design of S-boxes that leverages on Orthogonal CA (OCA), i.e. pairs of CA rules giving rise to orthogonal Latin squares. The motivation stands on the facts that an OCA pair already defines a bijective transformation, and moreover the orthogonality property of the resulting Latin squares ensures a minimum amount of diffusion. We exhaustively enumerate all S-boxes generated by OCA pairs of diameter $4 \le d \le 6$, and measure their nonlinearity. Interestingly, we observe that for $d=4$ and $d=5$ all S-boxes are linear, despite the underlying CA local rules being nonlinear. The smallest nonlinear S-boxes emerges for $d=6$, but their nonlinearity is still too low to be used in practice. Nonetheless, we unearth an interesting structure of linear OCA S-boxes, proving that their Linear Components Space (LCS) is itself the image of a linear CA, or equivalently a polynomial code. We finally classify all linear OCA S-boxes in terms of their generator polynomials.


翻译:文献中公布的通过 Cellulal Automata (CA) 工作来构建 Sboxes 的多数方法, 要么是重复一个限定 CA 以几个时间步骤, 要么是一次性应用全球规则。 这些作品的主要特征是它们使用一个单一 CA 规则来定义 Sbox 的矢量 Boolean 函数。 在这项工作中, 我们探索一个不同的方向来设计 S boxes, 利用 Orthogonal CA( OCA), 即导致拉丁方形正方形的 CA 规则。 动机在于一个事实, 即 OCA 配对已经定义了一个双向式的 CA, 以及由此生成的拉丁方的正态属性属性属性保证了最小的传播量 。 我们详尽地列出了由直径为 4 le d d d d le 6 6 的OCA( ) 生成的所有 S boxes 设计, 也就是所有 Sboxes 的 CA 线性规则都是线性, 尽管其直线性规则是非直径直线性 CARC 。</s>

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
16+阅读 · 2020年5月20日
Arxiv
38+阅读 · 2020年3月10日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员