Hate speech is a pressing issue in modern society, with significant effects both online and offline. Recent research in hate speech detection has primarily centered on text-based media, largely overlooking multimodal content such as videos. Existing studies on hateful video datasets have predominantly focused on English content within a Western context and have been limited to binary labels (hateful or non-hateful), lacking detailed contextual information. This study presents MultiHateClip1 , an novel multilingual dataset created through hate lexicons and human annotation. It aims to enhance the detection of hateful videos on platforms such as YouTube and Bilibili, including content in both English and Chinese languages. Comprising 2,000 videos annotated for hatefulness, offensiveness, and normalcy, this dataset provides a cross-cultural perspective on gender-based hate speech. Through a detailed examination of human annotation results, we discuss the differences between Chinese and English hateful videos and underscore the importance of different modalities in hateful and offensive video analysis. Evaluations of state-of-the-art video classification models, such as VLM, GPT-4V and Qwen-VL, on MultiHateClip highlight the existing challenges in accurately distinguishing between hateful and offensive content and the urgent need for models that are both multimodally and culturally nuanced. MultiHateClip represents a foundational advance in enhancing hateful video detection by underscoring the necessity of a multimodal and culturally sensitive approach in combating online hate speech.
翻译:暂无翻译