When solving the Hamiltonian path problem it seems natural to be given additional precedence constraints for the order in which the vertices are visited. For example one could decide whether a Hamiltonian path exists for a fixed starting point, or that some vertices are visited before another vertex. We consider the problem of finding a Hamiltonian path that observes all precedence constraints given in a partial order on the vertex set. We show that this problem is $\mathsf{NP}$-complete even if restricted to complete bipartite graphs and posets of height 2. In contrast, for posets of width $k$ there is an $\mathcal{O}(k^2 n^k)$ algorithm for arbitrary graphs with $n$ vertices. We show that it is unlikely that the running time of this algorithm can be improved significantly, i.e., there is no $f(k) n^{o(k)}$ time algorithm under the assumption of the Exponential Time Hypothesis. Furthermore, for the class of outerplanar graphs, we give an $\mathcal{O}(n^2)$ algorithm for arbitrary posets.
翻译:暂无翻译