In the scope of "AI for Science", solving inverse problems is a longstanding challenge in materials and drug discovery, where the goal is to determine the hidden structures given a set of desirable properties. Deep generative models are recently proposed to solve inverse problems, but these currently use expensive forward operators and struggle in precisely localizing the exact solutions and fully exploring the parameter spaces without missing solutions. In this work, we propose a novel approach (called iPage) to accelerate the inverse learning process by leveraging probabilistic inference from deep invertible models and deterministic optimization via fast gradient descent. Given a target property, the learned invertible model provides a posterior over the parameter space; we identify these posterior samples as an intelligent prior initialization which enables us to narrow down the search space. We then perform gradient descent to calibrate the inverse solutions within a local region. Meanwhile, a space-filling sampling is imposed on the latent space to better explore and capture all possible solutions. We evaluate our approach on three benchmark tasks and two created datasets with real-world applications from quantum chemistry and additive manufacturing, and find our method achieves superior performance compared to several state-of-the-art baseline methods. The iPage code is available at https://github.com/jxzhangjhu/MatDesINNe.
翻译:在“科学的AI”范围内,解决逆向问题是材料和药物发现中长期存在的一个挑战,其目标是确定隐藏的结构,并赋予一组可取的特性。最近提出了深基因模型,以解决反向问题,但目前这些模型使用昂贵的远前操作员,并努力精确地确定精确的解决方案,充分探索参数空间,而不遗漏解决方案。在这项工作中,我们提议一种新颖的方法(称为iPage),通过利用从深不可见的模型和通过快速梯度下降的确定性优化得出的概率推论,加快反向学习进程。根据目标属性,所学的不可逆模型为参数空间提供了外延镜;我们将这些远端样本确定为智能的先前初始化,从而使我们能够缩小搜索空间。然后我们进行梯度下降,以调整本地区域内的反向解决方案。与此同时,对潜伏空间进行了空间进行空间取样,以更好地探索和捕捉所有可能的解决办法。我们评估了我们关于三项基准任务的方法,以及两个创建的数据集,其实际应用来自量子化学和添加剂制造,并发现我们的方法是高超级的。