Many industrial applications rely on real-time optimization to improve key performance indicators. In the case of unknown process characteristics, real-time optimization becomes challenging, particularly for the satisfaction of safety constraints. In this paper, we demonstrate the application of an adaptive and explorative real-time optimization framework to an industrial refrigeration process, where we learn the process characteristics through changes in process control targets and through exploration to satisfy safety constraints. We quantify the uncertainty in unknown compressor characteristics of the refrigeration plant by using Gaussian processes and incorporate this uncertainty into the objective function of the real-time optimization problem as a weighted cost term. We adaptively control the weight of this term to drive exploration. The results of our simulation experiments indicate the proposed approach can help to increase the energy efficiency of the considered refrigeration process, closely approximating the performance of a solution that has complete information about the compressor performance characteristics.
翻译:许多工业应用都依靠实时优化来改进关键业绩指标。在工艺特性不明的情况下,实时优化变得具有挑战性,特别是对于满足安全限制而言。在本文件中,我们展示了对工业制冷工艺应用适应性和探索性实时优化框架的情况,我们通过改变工艺控制目标以及为满足安全限制而进行勘探来了解工艺特性。我们利用高森工艺来量化制冷厂的未知压缩机特性的不确定性,并将这种不确定性作为加权成本术语纳入实时优化问题的目标功能。我们适应性地控制该术语的重量,以驱动勘探。我们的模拟实验结果表明,拟议方法有助于提高所考虑的制冷工艺的能源效率,密切接近能够完整了解压缩机性能特性的解决方案的性能。