Relying on random matrix theory (RMT), this paper studies asymmetric order-$d$ spiked tensor models with Gaussian noise. Using the variational definition of the singular vectors and values of (Lim, 2005), we show that the analysis of the considered model boils down to the analysis of an equivalent spiked symmetric \textit{block-wise} random matrix, that is constructed from \textit{contractions} of the studied tensor with the singular vectors associated to its best rank-1 approximation. Our approach allows the exact characterization of the almost sure asymptotic singular value and alignments of the corresponding singular vectors with the true spike components, when $\frac{n_i}{\sum_{j=1}^d n_j}\to c_i\in (0, 1)$ with $n_i$'s the tensor dimensions. In contrast to other works that rely mostly on tools from statistical physics to study random tensors, our results rely solely on classical RMT tools such as Stein's lemma. Finally, classical RMT results concerning spiked random matrices are recovered as a particular case.
翻译:本文根据随机矩阵理论( RMT), 研究使用高森噪声( Lim, 2005) 的单向量和值的变异定义, 我们显示, 对考虑的模型的分析归结为对等的加压对称( textit{ block-wise) 随机矩阵的分析, 由所研究的同其最高一级近似值相关单向量的超向量量量( textit{ contractions ) 所构造 。 我们的方法允许精确描述几乎肯定的单向量值和相应的单向量与真正峰值的匹配值( Lim, 2005) 。 当 $frac{n_ iúsum_ j=1\ d n_j ⁇ to c_ i\ in ( 0, 1) 和 $n_ i 维度( 美元) 。 和主要依赖统计物理工具研究随机数的其他工程相比, 我们的结果只依靠Stein's Lemma 等典型RMT 工具。 最后, 有关钉压随机随机矩阵的经典 RMT结果作为特定案例被回收。