A common goal in network modeling is to uncover the latent community structure present among nodes. For many real-world networks, the true connections consist of events arriving as streams, which are then aggregated to form edges, ignoring the dynamic temporal component. A natural way to take account of these temporal dynamics of interactions is to use point processes as the foundation of network models for community detection. Computational complexity hampers the scalability of such approaches to large sparse networks. To circumvent this challenge, we propose a fast online variational inference algorithm for estimating the latent structure underlying dynamic event arrivals on a network, using continuous-time point process latent network models. We describe this procedure for networks models capturing community structure. This structure can be learned as new events are observed on the network, updating the inferred community assignments. We investigate the theoretical properties of such an inference scheme, and provide regret bounds on the loss function of this procedure. The proposed inference procedure is then thoroughly compared, using both simulation studies and real data, to non-online variants. We demonstrate that online inference can obtain comparable performance, in terms of community recovery, to non-online variants, while realising computational gains. Our proposed inference framework can also be readily modified to incorporate other popular network structures.
翻译:网络建模的一个共同目标是发现节点之间的潜在社区结构。对于许多现实世界网络来说,真正的连接包括以流形式到达的事件,然后将其汇总为形成边缘,忽视动态时间部分。一种自然的考虑这些时间互动动态的方法是利用点进程作为社区探测网络模型的基础。计算复杂性妨碍了这种方法对大稀少网络的可扩缩性。为了回避这一挑战,我们提议采用快速在线变异推算法,利用连续时间点进程潜在网络模型来估计一个网络上动态事件的潜在结构。我们描述用于捕捉社区结构的网络模型的这一程序。这种结构可以随着在网络上观测新的事件而学习,更新推断的社区任务。我们调查这种推断方法的理论属性,并提供有关这种程序损失功能的遗憾界限。然后,利用模拟研究和真实数据,将拟议的推论程序与非在线变量进行彻底比较。我们证明在线推论可以取得可比较的业绩,在社区恢复方面,也可以将网络模型纳入非在线的模型,同时将我们的拟议模型纳入非在线的模型框架。