Hateful meme classification is a challenging multimodal task that requires complex reasoning and contextual background knowledge. Ideally, we could leverage an explicit external knowledge base to supplement contextual and cultural information in hateful memes. However, there is no known explicit external knowledge base that could provide such hate speech contextual information. To address this gap, we propose PromptHate, a simple yet effective prompt-based model that prompts pre-trained language models (PLMs) for hateful meme classification. Specifically, we construct simple prompts and provide a few in-context examples to exploit the implicit knowledge in the pre-trained RoBERTa language model for hateful meme classification. We conduct extensive experiments on two publicly available hateful and offensive meme datasets. Our experimental results show that PromptHate is able to achieve a high AUC of 90.96, outperforming state-of-the-art baselines on the hateful meme classification task. We also perform fine-grained analyses and case studies on various prompt settings and demonstrate the effectiveness of the prompts on hateful meme classification.


翻译:仇恨的Memme分类是一项具有挑战性的多式联运任务,需要复杂的推理和背景背景知识。理想的情况是,我们可以利用一个明确的外部知识库来补充仇恨的Memes中的背景和文化信息。然而,没有已知的明确的外部知识库可以提供这种仇恨言论背景信息。为了解决这一差距,我们建议“迅速”模式,这是一个简单而有效的快速模型,它能促进为仇恨的Memme分类提供经过事先训练的语言模型(PLMS)。具体地说,我们制作简单的提示,并提供几个文本内的例子,利用经过训练的RoBERTA语言模型中隐含的知识来进行仇恨的Memme分类。我们对两种公开存在的仇恨和攻击性Meme数据集进行了广泛的实验。我们的实验结果表明,“迅速”能够实现90.96的高级ACU,在仇恨的Mmeme分类任务上超越了最先进的基线。我们还对各种快速环境进行了精细的分析和案例研究,并展示了仇恨的Mmee分类的提示的有效性。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
13+阅读 · 2022年1月20日
Arxiv
12+阅读 · 2019年2月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员