Palindromes are popular and important objects in textual data processing, bioinformatics, and combinatorics on words. Let $S = XaY$ be a string, where $X$ and $Y$ are of the same length and $a$ is either a single character or the empty string. Then, there exist two alternative definitions for palindromes: $S$ is said to be a palindrome if: Reversal-based definition: $S$ is equal to its reversal $S^R$; Symmetry-based definition: its left-arm $X$ is equal to the reversal of its right-arm $Y^R$. It is clear that if the "equality" ($\approx$) used in both definitions is exact character matching ($=$), then the two definitions are the same. However, if we apply other string-equality criteria $\approx$, including the complementary model for biological sequences, the parameterized model [Baker, JCSS 1996], the order-preserving model [Kim et al., TCS 2014], the Cartesian-tree model [Park et al., TCS 2020], and the palindromic-structure model [I et al., TCS 2013], then are the reversal-based palindromes and the symmetry-based palindromes the same? To the best of our knowledge, no previous work has considered or answered this natural question. In this paper, we first provide answers to this question, and then present efficient algorithms for computing all maximal generalized palindromes that occur in a given string. After confirming that Gusfield's offline suffix-tree based algorithm for computing maximal symmetry-based palindromes can be readily extended to the aforementioned matching models, we show how to extend Manacher's online algorithm for computing maximal reversal-based palindromes in linear time for all the aforementioned matching models.


翻译:Palindrome 是文本数据处理、生物信息学和词组组合中最受欢迎的重要对象。 让 $S = XAY$ 是一个字符串, 美元和美元为同一长度, 美元为单一字符或空字符串。 然后, 有两种关于 Palindrome 的替代定义 : 以 $S$ 表示是一个暗质质, 如果: 校正定义 : $S 等于其翻转 $S ; 校正法定义 : 其左臂 $X$ 等于其右臂 $X$ 等于其右臂 美元 $YQR$ 。 如果两个定义中使用的“ equality $\ a progrox ” 是精确字符匹配( =$), 那么两个定义是相同的。 但是, 如果我们应用其他的弦平标准 $\ apprealdroxx, 包括生物序列的补充模型[Baker, JCSS stroads basil, road- deal- smodemodemodel [Kyal salalal deal- deal deal deal deal deal deal deal deal deal deals], modelal demods the the the s mal deal deal deal deal demod.

0
下载
关闭预览

相关内容

它的目的是理解计算的本质,并因此提供更有效的方法。所有介绍或研究数学、逻辑和形式概念和方法的论文都是受欢迎的,前提是它们的动机显然来自计算领域。理论计算机科学发表的论文按其性质分为三个部分。第一部分“算法,自动机,复杂性和游戏”致力于研究算法及其复杂性,使用分析,组合或概率的方法。它包括抽象复杂性的整个领域(即,所有可以使用图灵机器定义的层次结构的结果)、自动机和语言理论的整个领域(包括无限词和无限语言的自动机),整个几何(图形)应用领域和使用统计方法测量系统性能的整个领域。官网链接:https://www.sciencedirect.com/journal/theoretical-computer-science/about/aims-and-scope
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
40+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月16日
Arxiv
0+阅读 · 2022年12月15日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员