A rotation-two-component Camassa-Holm (R2CH) system was proposed recently to describe the motion of shallow water waves under the influence of gravity. This is a highly nonlinear and strongly coupled system of partial differential equations. A crucial issue in designing numerical schemes is to preserve invariants as many as possible at the discrete level. In this paper, we present a provable implicit nonlinear difference scheme which preserves at least three discrete conservation invariants: energy, mass, and momentum, and prove the existence of the difference solution via the Browder theorem. The error analysis is based on novel and refined estimates of the bilinear operator in the difference scheme. By skillfully using the energy method, we prove that the difference scheme not only converges unconditionally when the rotational parameter diminishes, but also converges without any step-ratio restriction for the small energy case when the rotational parameter is nonzero. The convergence orders in both settings (zero or nonzero rotation parameter) are $O(\tau^2 + h^2)$ for the velocity in the $L^\infty$-norm and the surface elevation in the $L^2$-norm, where $\tau$ denotes the temporal stepsize and $h$ the spatial stepsize, respectively. The theoretical predictions are confirmed by a properly designed two-level iteration scheme. Comparing with existing numerical methods in the literature, the proposed method demonstrates its effectiveness for long-time simulation over larger domains and superior resolution for both smooth and non-smooth initial values.
翻译:最近提出了一个旋转双分量 Camassa-Holm(R2CH)系统,用于描述在重力影响下的浅水波运动。这是一个高度非线性并且强耦合的偏微分方程组。设计数值格式的关键问题是在离散级别上尽可能保持不变性。本文提出了一个可证明的隐式非线性差分格式,至少保持三个离散的守恒量(能量、质量和动量),并通过 Browder 定理证明了差分解的存在性。基于新颖和精细的估计双线性算子的方法进行误差分析。通过巧妙地运用能量方法,我们证明了差分格式不仅在旋转参数减小时无条件收敛,而且在旋转参数非零的小能量情况下也不需要任何步长比限制。在两种情况下(旋转参数为零或非零),速度在 $L^\infty$ 范数和海面高程在 $L^2$ 范数中的收敛阶数均为 $O(\tau^2+h^2)$,其中 $\tau$ 表示时间步长,$h$ 表示空间步长。理论预测通过特定设计的两级迭代格式得到了验证。与文献中现有的数值方法相比,所提出的方法在大范围的长时间模拟和对于光滑和不光滑初始值的更好分辨能力方面表现出了其有效性。