We consider regression problems with binary weights. Such optimization problems are ubiquitous in quantized learning models and digital communication systems. A natural approach is to optimize the corresponding Lagrangian using variants of the gradient ascent-descent method. Such maximin techniques are still poorly understood even in the concave-convex case. The non-convex binary constraints may lead to spurious local minima. Interestingly, we prove that this approach is optimal in linear regression with low noise conditions as well as robust regression with a small number of outliers. Practically, the method also performs well in regression with cross entropy loss, as well as non-convex multi-layer neural networks. Taken together our approach highlights the potential of saddle-point optimization for learning constrained models.
翻译:我们考虑的是二进制权重的回归问题。 在量化学习模型和数字通信系统中,这种优化问题无处不在。 一种自然的方法是使用梯度增白法的变异方法优化相应的拉格朗格人。 这种最大值技术仍然不太为人所知,即使是在 concave- convex 的情况下也是如此。 非cavex 的二进制制约可能导致虚假的本地迷你。 有趣的是,我们证明这种方法在线性回归中是最佳的,有低噪音条件,还有少数外部值的强劲回归。 实际上,这种方法在反回归中也表现良好,有跨倍增殖损失,还有非convex 多层神经网络。 结合我们的方法,我们的方法突出了学习受限模式的峰点优化潜力。