We introduce the problem of maximizing approximately $k$-submodular functions subject to size constraints. In this problem, one seeks to select $k$-disjoint subsets of a ground set with bounded total size or individual sizes, and maximum utility, given by a function that is "close" to being $k$-submodular. The problem finds applications in tasks such as sensor placement, where one wishes to install $k$ types of sensors whose measurements are noisy, and influence maximization, where one seeks to advertise $k$ topics to users of a social network whose level of influence is uncertain. To deal with the problem, we first provide two natural definitions for approximately $k$-submodular functions and establish a hierarchical relationship between them. Next, we show that simple greedy algorithms offer approximation guarantees for different types of size constraints. Last, we demonstrate experimentally that the greedy algorithms are effective in sensor placement and influence maximization problems.
翻译:我们引入了在大小限制下最大限度地增加约K$子模块功能的问题。 在这个问题中,我们试图选择一个地面组中以总大小或单个大小和最大功用“接近”为基美元子模块设定的以总大小和最大功用为“接近”为“基美元子模块”的分块。 这个问题在传感器定位等任务中发现应用,在传感器定位中,人们希望安装测量为噪音的K美元类型的传感器,影响最大化,人们试图向一个影响程度不确定的社会网络的用户做以K美元为主题的广告。 为了解决这个问题,我们首先为大约K美元子模块功能提供两个自然定义,并在它们之间建立等级关系。 其次,我们表明简单的贪婪算法为不同规模限制提供近似保证。 最后,我们实验性地证明贪婪算法在传感器定位和影响最大化问题上是有效的。