The task of learning a probability distribution from samples is ubiquitous across the natural sciences. The output distributions of local quantum circuits form a particularly interesting class of distributions, of key importance both to quantum advantage proposals and a variety of quantum machine learning algorithms. In this work, we provide an extensive characterization of the learnability of the output distributions of local quantum circuits. Our first result yields insight into the relationship between the efficient learnability and the efficient simulatability of these distributions. Specifically, we prove that the density modelling problem associated with Clifford circuits can be efficiently solved, while for depth $d=n^{\Omega(1)}$ circuits the injection of a single $T$-gate into the circuit renders this problem hard. This result shows that efficient simulatability does not imply efficient learnability. Our second set of results provides insight into the potential and limitations of quantum generative modelling algorithms. We first show that the generative modelling problem associated with depth $d=n^{\Omega(1)}$ local quantum circuits is hard for any learning algorithm, classical or quantum. As a consequence, one cannot use a quantum algorithm to gain a practical advantage for this task. We then show that, for a wide variety of the most practically relevant learning algorithms -- including hybrid-quantum classical algorithms -- even the generative modelling problem associated with depth $d=\omega(\log(n))$ Clifford circuits is hard. This result places limitations on the applicability of near-term hybrid quantum-classical generative modelling algorithms.
翻译:从样本中学习概率分布的任务在自然科学中无处不在。 本地量子电路的输出分布形成了一种特别有趣的分布类别, 这对于量子优势建议和各种量子机器学习算法都至关重要。 在这项工作中, 我们对本地量子电路输出分布的可学习性进行了广泛的描述。 我们的第一组结果可以洞察量量可学习性和这些分布的有效模拟算法的局限性。 具体地说, 我们证明, 与克里福德电路模型相关的密度建模问题可以有效解决, 而对于深度 $=n ⁇ Omega(1)} 美元, 将一个美元- T$- 开关注入电路的频率类别分配非常关键。 这个结果显示, 高效的混合性分布并不意味着有效的可学习性。 我们的第二组结果可以洞察到量子感化模型算法的潜力和局限性。 我们首先证明, 与深度( $= ⁇ Omega(1)} 当地量子电路相关的密度建模型问题对于任何学习算法、 古典或量计算方法来说都是困难的。 因此, 最实际的算算算法对于一个实际的里程- 级算学学到这个比值的进程, 级变数级算法对于这个任务来说, 也无法用一个实际地算法学到一个实际的进取。