In this paper, the interference cancellation information geometry approaches (IC-IGAs) for massive MIMO channel estimation are proposed. The proposed algorithms are low-complexity approximations of the minimum mean square error (MMSE) estimation. To illustrate the proposed algorithms, a unified framework of the information geometry approach for channel estimation and its geometric explanation are described first. Then, a modified form that has the same mean as the MMSE estimation is constructed. Based on this, the IC-IGA algorithm and the interference cancellation simplified information geometry approach (IC-SIGA) are derived by applying the information geometry framework. The a posteriori means on the equilibrium of the proposed algorithms are proved to be equal to the mean of MMSE estimation, and the complexity of the IC-SIGA algorithm in practical massive MIMO systems is further reduced by considering the beam-based statistical channel model (BSCM) and fast Fourier transform (FFT). Simulation results show that the proposed methods achieve similar performance as the existing information geometry approach (IGA) with lower complexity.
翻译:暂无翻译