In recent years, Artificial Neural Networks (ANNs) have been introduced in Structural Health Monitoring (SHM) systems. A semi-supervised method with a data-driven approach allows the ANN training on data acquired from an undamaged structural condition to detect structural damages. In standard approaches, after the training stage, a decision rule is manually defined to detect anomalous data. However, this process could be made automatic using machine learning methods, whom performances are maximised using hyperparameter optimization techniques. The paper proposes a semi-supervised method with a data-driven approach to detect structural anomalies. The methodology consists of: (i) a Variational Autoencoder (VAE) to approximate undamaged data distribution and (ii) a One-Class Support Vector Machine (OC-SVM) to discriminate different health conditions using damage sensitive features extracted from VAE's signal reconstruction. The method is applied to a scale steel structure that was tested in nine damage's scenarios by IASC-ASCE Structural Health Monitoring Task Group.
翻译:近年来,在结构健康监测系统中引入了人工神经网络(ANNs),采用半监督方法,采用数据驱动方法,使ANN培训能够从无损坏的结构状况中获取数据,以探测结构性损害;在标准方法中,在培训阶段后,用人工方式界定了检测异常数据的决定规则;然而,这一过程可以使用机器学习方法自动完成,机能利用超参数优化技术实现性能最大化;文件建议采用半监督方法,以数据驱动方法检测结构异常现象;方法包括:(一) 动态自动计算机(VAE),以大致显示未损坏的数据分布;(二) 一次性支持病媒机器(OC-SVM),以使用从VAE信号重建中提取的损害敏感特征对不同的健康条件进行歧视;该方法用于一个规模钢结构,由机构间常委会-ACE结构健康监测组在九种损害假设中测试。